DECARBOXYLIERUNG CYCLISCHER UND ACYCLISCHER DICARBOXYLATO-KOMPLEXE DES PLATINS

O.J. SCHERER⁻, K. HUSSONG und G. WOLMERSHÄUSER

Fachbereich Chemie der Universität Kaiserslautern, Erwin-Schrödinger-Strasse, D-6750 Kaiserslautern (B.R.D.)

(Eingegangen den 7. Dezember 1984)

Summary

The interaction of $(Ph_3P)_2PtO_2$ (I) with the dicarboxylic acids $HO_2C(CH_2)_nCO_2H$ (n = 1-3), phthalic acid and maleic acid gives the dicarboxylato complexes $(Ph_3P)_2PtO(O)C(CH_2)_nC(O)O$ (II) (n = 1-3), $(Ph_3P)_2PtO(O)CC_6H_4C(O)O$ (III) and cis-[$(Ph_3P)_2Pt(O(O)CCH=CHC(O)OH)_2$] (IV) in nearly quantitative yield. Thermal and photoinduced decarboxylation of III and IV yields the platina heterocycles $(Ph_3P)_2PtC_6H_4C(O)O$ (V) and $(Ph_3P)_2PtCH=CHC(O)O$ (VI) with a carbon-platinum σ -bond. Complex VI has been characterized by an X-ray crystal structure determination.

Zusammenfassung

Die Umsetzung von $(Ph_3P)_2PtO_2$ (I) mit den Dicarbonsäuren $HO_2C(CH_2)_nCO_2H$ (n = 1-3), Phthalsäure und Maleinsäure ergibt in nahezu quantitativer Ausbeute die Dicarboxylato-Komplexe $(Ph_3P)_2PtO(O)C(CH_2)_nC(O)O$ (II) (n = 1-3), $(Ph_3P)_2PtO(O)CC_6H_4C(O)O$ (III) und *cis*-[$(Ph_3P)_2Pt(O(O)CCH=CHC(O)OH)_2$] (IV). Die thermische und lichtind<u>uzierte Decar</u>boxylierung überfüh<u>rt III und IV in</u> die Platina-Heterocyclen $(Ph_3P)_2PtC_6H_4C(O)O$ (V) und $(Ph_3P)_2PtCH=CHC(O)O$ (VI) mit Pt-C- σ -Bindung. VI wurde durch eine Kristallstrukturanalyse charakterisiert.

Die Aktivierung des Kohlendioxids [1] zählt zu den aktuellen Forschungsgebieten. Weniger intensiv untersucht ist die Decarboxylierung (CO₂-Eliminierung) von Carboxylato-Komplexen, die zur Bildung von Element-Kohlenstoff- σ -Bindungen führen kann. Im Gegensatz zu den zahlreichen Beispielen aus der Chemie der Hauptgruppenelemente [2] ist die Bildung von Übergangsmetall-Kohlenstoff- σ -Bindungen durch thermische [3] oder lichtinduzierte [4] Decarboxylierung auf wenige Beispiele beschränkt.

:	ν(C=0) ^α	¹ H-NMR ^b	¹³ C(¹ H)-NMR ^b	³¹ P{ ¹ H}-NMR ^b	¹⁹⁵ Pt{ ¹ H}-NMR ^{6.c} (Ξ (MHz))
lla n = 1	1770	7.2-7.5(m,30H,C ₆ H ₅) 3.3(s,2H,CH ₂)	172.2(s,C=0)	7.9(s) ¹ J(PtP) 3760	443.0(t) (21.409481) ¹ J(PtP) 3770
IIb $n=2$	1740	7.1–7.7(m,30H,C ₆ H ₅) 1.2(s,4H,CH ₂)	177.9(s,C=O)	5.9(s) ¹ J(PtP) 3818	544.6(t) (21.411649) ¹ J(PtP) 3820
IIc n = 3	1720	7.1–7.6(m,30H,C ₆ H ₅) 1.48(t,4H,CH ₂), ³ J(HH) 7.1 1.21(q,2H,CH ₂)	178.5(s,C=O)	6.0(s) ¹ J(PtP) 3816	550.1(t) (21.411773) ¹ J(PtP) 3806
Ш	1690	7.0-8.0(m,30,C ₆ H ₅ ,2H,C ₆ H ₄) 6.9(dd,2H,C ₆ H ₄) ³ J(HH) 5.6, ⁴ J(HH) 3.3	174.4(s,C=O)	4.7(s) ¹ J(PtP) 3775	477.0(t) (21.410208) ¹ J(PtP) 3775
2	1685 1670 ▶(C=C)	12.3(s,COOH) 7.0-7.7(m,30H,C ₆ H ₅) 5.7(CH=CH, AB-System, ³ J(HH)12.8)	171.5(s,C=0) 164.9(s,COOH)	4.5(s) ¹ J(PtP) 3908	478.4(t) (21.410237) ¹ J(PtP) 3911
>	1625	7.0-8.0(m,30H,C ₆ H ₅ ,1H,C ₆ H ₄) 6.9("t"), <i>J</i> (HH)7.3) 6.6("t"), ³ J(HH)7.2) 6.4("t"), ³ J(HH)7.1)	173.0(s,C=O)	15.5(d) O trans ¹ /(PtP) 4128 27.8(d) C trans ¹ /(PtP) 1977 ² /(PP) 15.1	108.6(dd) (21.402324) ¹ J(PtP) 4126, 1975
IA	1715 1655 r(C=C)	7.0-8.0(m,30H,C ₆ H ₅) <i>ABMNX</i> -5pinsystem H ^a :6.3, ³ /(H ^a H ^b)8.3 ³ /(PH)11.5; 9.3, ² /(PtH) 60.3 H ^b :6.1, ³ /(H ^a H ^b)8.3 ⁴ /(PH)13.3; 2.4, ³ /(PtH) 39.9	187.4(s,C=O)	15.1(d) O trans ¹ J(PtP) 4088 25.0(d) C trans ¹ J(PtP) 1965 ² J(PP)14.4	61.8(dd) (21.401322) ¹ J(PtP) 4090, 1953

TABELLE 1. IR- UND NMR-DATEN DER KOMPLEXE II-VI (ν in cm⁻¹, δ in ppm, J in Hz)

216

Ergebnisse und Diskussion

Umsetzung von $(Ph_3P)_2PtO_2$ mit Dicarbonsäuren

In Analogie zur Reaktion von (Ph₃P)₂PtO₂ (I) mit Ameisensäure, die in fast quantitativer Ausbeute zum Bis-Formiato-Komplex cis-[(Ph₃P)₂Pt(O(O)CH)₂] führt [5], ergibt dessen Umsetzung mit Dicarbonsäuren in ebenfalls ausgezeichneter Ausbeute die cyclischen und acyclischen Dicarboxylato-Komplexe II-IV (Schema 1).

SCHEMA 1

Die wichtigsten spektroskopischen Daten von II, III und IV sind in Tab. 1 zusammengestellt.

Thermische Decarboxylierung

Im Gegensatz zu III und IV ergibt die Substanzklasse II unter den bei III und IV gewählten Thermolysebedingungen (bei 130°C war noch keine Reaktion zu erkennen, beim weiteren Erwärmen bis 200°C trat Zersetzung unter teilweiser Bildung von Ph₃PO ein) keine isolierbaren Decarboxylierungsprodukte.

Das Platinaoxophthalid-Derivat V wurde bereits aus $(Ph_3P)_2PtO(O)CC_6H_4N=N$ durch thermische N₂-Eliminierung dargestellt [6]. VI stellt den Grundkörper der Platinaoxacyclopentanone dar. Als weiteren Vertreter kennt man z. B. das auf ganz anderem Wege dargestellte [(Ph₃P)₂N][Cl(OC)PtC(CO₂Me)=C(Cl)C(O)O] (VII) [7]. Tabelle 1 enthält ausgewählte spektroskopische Daten von V und VI.

Lichtinduzierte Decarboxylierung

Bekannt ist die lichtinduzierte (UV) CO₂-Eliminierung beim Oxalato-Komplex

 $(Ph_3P)_2PtO(O)CC(O)O$, die wahrscheinlich $(Ph_3P)_2Pt$ ergibt, das dann seinerseits Folgereaktionen eingeht [8]. Während die Substanzklasse II im Wellenlängenbereich von 254–300 nm (Philips HPK 125 W) nicht oder nur zu komplexen Substanzgemischen reagiert, lassen sich V and VI, wenngleich in geringen Ausbeuten, auch photochemisch darstellen (in beiden Fällen weisen ³¹P-NMR-spektroskopische Untersuchungen auf die Bildung zusätzlicher Verbindungen, die bislang nicht isoliert werden konnten, hin).

III, IV
$$\xrightarrow{h\nu (\lambda = 254-300 \text{ nm})}{-CO_2}$$
 V, VI

Fig. 1. Struktur von (Ph₃P)₂ PtCH=CHC(O)O (VI) im Kristall.

Pt-P(1)	2.341(4)	Pt-P(2)	2.224(4)
Pt-C(3)	2.031(14)	Pt-O(2)	2.061(10)
C(3) - C(2)	1.334(20)	C(2)-C(1)	1.470(23)
C(1)-O(1)	1.235(19)	C(1)-O(2)	1.318(18)
P(2)-Pt-P(1)	99.3 (1)	C(3) - Pt - P(1)	173.2(5)
C(3) - Pt - P(2)	87.0(5)	O(2) - Pt - P(1)	93.5(3)
O(2)-Pt-P(2)	167.1(3)	O(2) - Pt - C(3)	80.2(5)
C(2) - C(3) - Pt	112.6(12)	C(1)-O(2)-Pt	114.9(10)
O(1)-C(1)-C(2)	124.1(16)	O(2) - C(1) - C(2)	113.7(15)
O(2)-C(1)-O(1)	122.2(17)	C(3)-C(2)-C(1)	118.5(15)

TABELLE 2 AUSGEWÄHLTE BINDUNGSABSTÄNDE (Å) UND -WINKEL (°) VON VI

Kristallstrukturanalyse des 1-Platina-2-oxa-cyclopent-4-en-3-ons (VI)

Figur 1 zeigt die Struktur im Kristall, Tab. 2 enthält die wichtigsten Abstände und Winkel. Das quadratisch planare Platinatom (Winkelsumme 360.0°) ist Bestandteil eines ebenen Fünfringes (Winkelsumme 539.9°). Die Pt-P-Abstände liegen in dem Bereich, den man aufgrund des unterschiedlichen *trans*-Einflusses der Ring-Nachbaratome (Sauerstoff bzw. Kohlenstoff) erwartet. Abstände und Winkel der weiteren Bindungspartner des Fünfringes weisen nur geringfügige Unterschiede zum vergleichbaren [(OC)ClPtC(CO₂Me)=C(Cl)C(O)O]⁻ auf [7].

Experimentelles

Alle Untersuchungen wurden unter Schutzgas (Argon durchgeführt. $(Ph_3P)_2PtO_2$ (I) [9].

 $(Ph_3P)_2\dot{P}tO(O)CCH_2C(O)\dot{O}$ (IIa). In einem Zentrifugenglas gibt man bei Raumtemperatur und kräftigem Rühren zu 80 mg (0.107 mmol) I eine Lösung von 12.0 mg (0.115 mmol) Malonsäure in 7 ml THF. Die gelbe Suspension klart rasch auf. Nach ca. 2 min bildet sich ein farbloser Niederschlag. Man rührt noch 30 min weiter, zentrifugiert, dekantiert, wäscht den Niederschlag zweimal mit 2 ml Pentan und trocknet im Ölpumpenvakuum. Ausbeute 79.8 mg (96%). Gef.: C, 56.60; H, 3.97. $C_{39}H_{32}O_4P_2Pt$ ber.: C, 57.01; H, 3.93%.

 $(Ph_3P)_2PtO(O)C(CH_2)_2C(O)O$ (11b). 206.8 mg (0.275 mmol) I, 32.6 mg (0.276 mmol) Bernsteinsäure, 5 ml THF. Versuchsdurchführung wie bei IIa. Zweimal mit je 4 ml Pentan gewaschen. Ausbeute 218 mg (94%). Gef.: C, 56.40; H, 4.02. C₄₀H₃₄O₄P₂Pt ber.: C, 57.49; H, 4.10%.

 $(Ph_{3}P)_{2}PtO(O)C(CH_{2})_{3}C(O)O$ (IIc). 104.75 mg (0.14 mmol) I in 1 ml CH₂Cl₂, 18.78 mg (0.142 mmol) Glutarsäure in 2 ml THF. Versuchsdurchführung wie bei IIa. Ausbeute 111.6 mg (94%). Gef.: C, 57.00; H, 4.32. C₄₁H₃₆O₄P₂Pt ber.: C, 57.95; H, 4.27%.

 $(Ph_{3}P)_{2}PtO(O)CC_{6}H_{4}C(O)O$ (III). 119.5 mg (0.159 mmol) I, 28 mg (0.168 mmol) Phthalsäure, 9 ml THF. Versuchsdurchführung wie bei IIa (60 min weitergerührt). Ausbeute 136.8 mg (97%). Gef.: 59.60; H, 4.04. $C_{44}H_{34}O_{4}P_{2}Pt$ ber.: C, 59.79; H, 3.88%.

TABELLE 3

LAGÉPARAMETER DER ATOME UND ÄQUIVALENTE ISOTROPE THERMISCHE PARAME-TER VON VI ($Å^2 \times 10^3$); U_{eq} definiert als 1/3 der Spur der orthogonalisierten U_{ij} Tensors

Atom	x/a	y/b	z/c	U _{eq}
Pt	0.0313(1)	0.0861(1)	0.1678(1)	34(1)
P(1)	0.2455(3)	0.0714(2)	0.1338(2)	36(2)
C(12)	0.4425(9)	0.1930(6)	0.1185(4)	53(10)
C(13)	0.4957(9)	0.2640(6)	0.0916(4)	61(11)
C(14)	0.4255(9)	0.3056(6)	0.0460(4)	76(14)
C(15)	0.3022(9)	0.2763(6)	0.0273(4)	80(14)
C(16)	0.2490(9)	0.2053(6)	0.0542(4)	69(12)
C(11)	0.3191(9)	0.1637(6)	0.0998(4)	40(8)
C(22)	0.3800(8)	-0.0341(7)	0.0549(4)	51(10)
C(23)	0.3850(8)	-0.0940(7)	0.0094(4)	66(11)
C(24)	0.2690(8)	-0.1255(7)	-0.0164(4)	69(12)
C(25)	0.1480(8)	-0.0972(7)	0.0034(4)	65(12)
C(26)	0.1430(8)	-0.0373(7)	0.0490(4)	49(10)
C(21)	0.2590(8)	-0.0058(7)	0.0748(4)	43(9)
C(32)	0.3580(9)	0.1057(6)	0.2414(4)	56(11)
C(33)	0.4464(9)	0.0977(6)	0.2899(4)	76(13)
C(34)	0.5379(9)	0.0326(6)	0.2909(4)	73(13)
C(35)	0.5411(9)	-0.0245(6)	0.2435(4)	64(12)
C(36)	0.4527(9)	-0.0165(6)	0.1951(4)	55(10)
C(31)	0.3611(9)	0.0486(6)	0.1940(4)	36(8)
P(2)	0.0132(4)	-0.0349(2)	0.2168(2)	37(2)
C(42)	0.2142(11)	-0.1161(6)	0.2830(4)	54(10)
C(43)	0.3215(11)	-0.1700(6)	0.2898(4)	63(12)
C(44)	0.3634(11)	- 0.2170(6)	0.2410(4)	61(12)
C(45)	0.2981(11)	-0.2101(6)	0.1855(4)	58(11)
C(46)	0.1908(11)	-0.1562(6)	0.1787(4)	55(11)
C(41)	0.1489(11)	-0.1092(6)	0.2275(4)	41(9)
C(52)	-0.1868(10)	-0.0721(5)	0.1339(5)	59(11)
C(53)	-0.2818(10)	-0.1229(5)	0.1061(5)	63(11)
C(54)	-0.3015(10)	-0.2046(5)	0.1266(5)	80(14)
C(55)	-0.2262(10)	-0.2355(5)	0.1748(5)	79(14)
C(56)	-0.1313(10)	-0.1847(5)	0.2026(5)	61(11)
C(51)	-0.1115(10)	-0.1030(5)	0.1821(5)	40(9)
C(62)	-0.1332(9)	-0.0576(5)	0.3222(4)	48(9)
C(63)	-0.1674(9)	-0.0359(5)	0.3804(4)	49(10)
C(64)	- 0.1044(9)	0.0308(5)	0.4097(4)	70(13)
C(65)	-0.0072(9)	0.0759(5)	0.3806(4)	84(14)
C(66)	0.0270(9)	0.0542(5)	0.3224(4)	61(11)
C(61)	-0.0360(9)	-0.0125(5)	0.2932(4)	39(9)
C(1)	-0.1080(16)	0.2383(11)	0.1384(8)	55(11)
C(2)	-0.1938(15)	0.1886(11)	0.1767(8)	54(10)
C(3)	-0.1519(15)	0.1136(10)	0.1958(6)	42(9)
O(1)	-0.1378(14)	0.3075(8)	0.1170(7)	94(11)
O(2)	0.0042(10)	0.2011(6)	0.1270(5)	49(6)

 $cis-[(Ph_3P)_2Pt(O(O)CCH=CHC(O)OH)_2]$ (IV). 148.5 mg (0.198 mmol) I, 46.2 mg (0.4 mmol) Maleinsäure, 5 ml THF. Versuchsdurchführung wie bei IIa. Ausbeute 169.5 mg (91%). Gef.: C, 55.10; H, 3.80. C₄₄H₃₆O₈P₂Pt ber.: C, 55.64; H, 3.82%. (Ph_3P)_2PtC_6H_4C(O)O (V) durch Thermolyse von III. 61.48 mg (0.07 mmol) III

 $(Ph_{3}P)_{2}PiCH = CHC(O)O$ (VI) durch Thermolyse von IV. 169.5 mg (0.18 mmol) IV, 130°C. Versuchsdurchführung wie bei V. Ausbeute 112.7 mg (79%). Gef.: C, 59.00; H, 4.04. C₃₉H₃₂O₂P₂Pt ber.: C, 59.32; H, 4.08%.

Photochemische Darstellung von V

108.0 mg (0.122 mmol) III, gelöst in 50 ml Toluen, werden bei 10°C in einer Quarzglasapparatur (Hg-Hochdrucklampe, Philips, HPK 125 W) 90 min bestrahlt. Nach Abziehen des Lösungsmittels im Vakuum wird der Rückstand aus 4 ml CH_2Cl_2 umkristallisiert (-20°C). Ausbeute 8.4 mg (8.2%) V, das mit dem durch Thermolyse dargestellten Produkt NMR-spektroskopisch identisch ist.

Photochemische Darstellung von VI

76.7 mg (0.081 mmol) IV, 50 ml CH_3CN , 100 min Bestrahlung. Versuchsdurchführung wie bei V. Ausbeute 16.2 mg (25.4%) VI, das mit dem durch Thermolyse dargestellten Produkt NMR-spektroskopisch identisch ist.

Röntgenstrukturanalyse von VI *

Die röntgenographische Untersuchung wurde an einem ca. $0.2 \times 0.15 \times 0.12$ mm grossen Kristall auf einem CAD 4-Diffraktometer der Firma Enraf-Nonius durchgeführt (Mo- K_{α} , λ 0.71073 Å). Die Verbindung kristallisiert monoklin, Raumgruppe $P2_{1/n}$, a 10.192(2), b 15.925(1), c 22.284(3) Å, β 91.42(2)°, V 3615.5(9) Å³, Z = 4, $d_{\text{ber.}}$ 1.45 g/cm³.

Die Zellkonstanten wurden aus den θ -Werten von 20 zentrierten Reflexen im Bereich $18.4 \le 2\theta \le 41.0^{\circ}$ errechnet. Die Intensitätsmessung (θ -2 θ -scans) ergab 5239 unabhängige Reflexe, von denen 4090 als beobachtet ($I \ge 2\sigma(I)$ eingestuft wurden. Zur empirischen Absorptionskorrektur (μ 38.24 cm⁻¹) wurden die ψ -Kurven von 5 Reflexen mit hohen χ -Werten herangezogen.

Die Lösung der Struktur erfolgte über Patterson, Fourier- und Differenz-Fourier-Synthesen. Die Phenylringe wurden als starre reguläre Sechsecke behandelt (C-C-Abstand 1.395 Å); die Lagen der Wasserstoffatome wurden berechnet und nicht verfeinert. Für sämtliche Nichtwasserstoffatome wurden anisotrope Temperaturfaktoren eingeführt (Parameteranzahl 332). Nach Verfeinerung (max. shift/error: 0.15 im letzten Cyclus) wurden folgende *R*-Werte erhalten: R = 0.057; $R_w = [\Sigma w || F_0 | - |F_c ||^2 / \Sigma w || F_0 |^2]^{1/2} = 0.075$ ($w = (\sigma^2(F) + 0.001F^2)^{-1}$. Eine verbleibende Restelektronendichte von ca. 1.5 e Å⁻³ ist auf eingebautes Lösungsmittel zurückzuführen (kürzeste Kontakte zu Protonen der Phenylringe ca. 2.85 Å). Eine Verfeinerung dieser Positionen war allerdings nicht erfolgreich.

^{*} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie, Physik, Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CDS 51161, der Autoren und des Zeitschriftenzitats angefordert werden.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die grosszügige Förderung.

Literatur

- 1 Neue Übersichten: D.J. Darensbourg und R.A. Kudaroski, Adv. Organomet. Chem., 22 (1983) 129; D.A. Palmer und R. Van Eldik, Chem. Rev., 83 (1983) 651.
- 2 Z.B.G.B. Deacon, Organomet. Chem. Rev., A5 (1970) 355.
- 3 Z.B.G.B. Deacon, S.J. Faulks und I.L. Grayson, Trans. Met. Chem., 3 (1978) 317.
- 4 Z.B.A.L. Poznyak, V.I. Pavlovski, E.B. Chuklanova, T.N. Polynova und M.A. Porai-Koshits, Monatsh. Chem., 113 (1982) 561.
- 5 O.J. Scherer, H. Jungmann und K. Hussong, J. Organomet. Chem., 247 (1983) C1.
- 6 C.D. Cook und G.S. Jauhal, J. Am. Chem. Soc., 90 (1968) 1464.
- 7 F. Canziani, L. Garlaschelli, M.C. Malatesta und A. Albinati, J. Chem. Soc., Dalton Trans., (1981) 2395.
- 8 D.M. Blake und C.J. Nyman, Chem. Commun., (1969) 483.
- 9 C.J. Nyman, C.E. Wymore und G. Wilkinson, J. Chem. Soc. (A), (1968) 561.